中国市场的三因子模型简单实践(1)_基于python(简单使用)

本文基于Python探讨中国股票市场的三因子模型,通过分析2016年至2019年的数据,发现总市值与股票月回报率的关系与论文描述相反,存在市值效应。使用线性回归进行简单分析,但结果不理想,R2值较低。接下来计划研究市盈率等其他市场因子,但目前数据未完备。
摘要由CSDN通过智能技术生成

参考论文:《中国股票市场的三因子模型》——范龙振,余世典。
数据:2016-01——2019-03 国泰安

单个因素对股票回报率的影响

1、总市值对股票影响分析
在这里插入图片描述

import numpy as np 
import pandas as pd
import matplotlib.pyplot as plt 
df_retdata = pd.read_csv('trd_m.csv').dropna()
df_retdata['tt_value'] = np.log10(df_retdata['Msmvttl'])
df_retdata['lq_value'] = np.log10(df_retdata['Msmvosd'])
print(df_retdata.head())

#大概先看下总市值的对数与收益率有什么关系
trddate_list = set(df_retdata['Trdmnt'])
for date_i in trddate_list:
	df_i = df_retdata[df_retdata['Trdmnt']==date_i]
	plt.scatter(df_retdata.tt_value,df_retdata.Mretwd)
	plt.show()

结果显示每个月份市值与个股票的月回报率之间的散点图很相似,而且没有十分明显的线性关系,倒是确实有论文中讲的市值效应、市值较大的收益率反而较低,是指较小的有着比较高的回报率,并且我发现市值再在106.5 到107.5 之间回报

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值